SAGE-analysis Documentation
Release 0.0.1

Jacob Seiler, Manodeep Sinha, Darren Croton

Apr 13, 2020

User Documentation

1 Installation

2 Maintainers

2.1 Introduction
2.2 SettingupSAGE L.
2.3 Analysing SAGEOutput
2.4 Analysing Across Multiple Snapshots
2.5 Analysing and Plotting Multiple Models
2.6 Defining Custom Properties
2.7 Ingesting CustomData
2.8 sage_analysis.Model
2.9 sage_analysis.sage_hdf5
2.10 sage_analysis.sage_binary
2.11 sage_analysis.example_calcs
2.12 sage_analysis.example_plots
2.13 sage_analysis.utils
Python Module Index
Index

SAGE-analysis Documentation, Release 0.0.1

This is the documentation for the Semi-Analytic Galaxy Evolution (SAGE) analysis package. This package ingests,
analyses, and plots the data products of the SAGE model, located here. Please refer to the to the SAGE repo for full
documentation regarding how to run the base model.

User Documentation 1

https://github.com/sage-home/sage-model
https://github.com/sage-home/sage-model

SAGE-analysis Documentation, Release 0.0.1

2 User Documentation

CHAPTER 1

Installation

The recommended installing method is through pip:

$ pip install sage-analysis

SAGE-analysis Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Maintainers

* Jacob Seiler (@jacobseiler)
e User Documentation

* API Reference

2.1 Introduction

The SAGE-analysis package was developed to handle the data products produced by the SAGE model, available here.

2.1.1 Why Did We Create A New Repo?

SAGE is an extremely modular and flexible semi-analytic model. The base model (presented in Croton et al., 2016)
has been adjusted and altered to answer a number of science questions on a variety of topics including galactic HI and
angular momentum properties in DARK SAGE, the Epoch of Reionization in RSAGE, and the star formation history
and galactic dust in DUSTY SAGE _.

Due to the wide array of science that SAGE can cover and the number of models that spawned from its development,
there has been a need to develop a framework to ingest in data from (ideally) any SAGE variant. This repo represents
such an effort. It represents a series of modules intended to provide the easy ingestion and analysis of the base SAGE
data, whilst serving as a template for analysing any other SAGE flavours.

2.1.2 Advantages of the Package
* Easy analysis and plotting of multiple different SAGE models. For example, comparing SAGE models
with/without supernova feedback.

¢ Memory efficient analysis of SAGE output. All calculations are performed using only a single output file at a
time, ensuring no extra memory overhead associated with opening many files.

* Support for the user to implement their own functions to analysis + plotting.

https://github.com/jacobseiler
https://github.com/sage-home/sage-model
https://arxiv.org/abs/1601.04709
https://arxiv.org/abs/1605.00647
https://arxiv.org/abs/1902.01611

SAGE-analysis Documentation, Release 0.0.1

» Template for creating custom data classes to ingest any arbitrary SAGE data output. Useful if you’re looking to
develop using SAGE.

2.2 Setting up SAGE

This package ingests, analyses, and plots the data products produced by SAGE. Hence, the first step is to run the
SAGE model and simulate some galaxies! We defer to the **SAGE** documentation for instructions on how run the
SAGE model.

2.3 Analysing SAGE Output

On this page, we show how to analyse the SAGE output for a single snapshot. This full example is shown in the
galaxy_properties module using the default parameter file.

We explain how to analyse SAGE output across multiple snapshots here.

2.3.1 Setting Things Up

First things first, we need to specify exactly what we want to analyse/plot, how the plots will be saved, and where the
plots will be saved.

Going to just plot the stellar mass function.
plot_toggles = {"SME": 1}

plot_output_format = "png"
plot_output_path = "./plots"

if not os.path.exists(plot_output_path):
os.makedirs (plot_output_path)

2.3.2 Model Dictionary

Each model that you wish to analyse is specifed through a dictionary. This defines properties such as the snapshot you
wish to analyse, the location of the SAGE parameter file, etc.

millennium = { "snapshot": 63, # Snapshot we're plotting properties at.
"IMEF": "Chabrier", # Chabrier or Salpeter.
"label": "Mini-Millennium", # Legend label.
"sage_file": "../input/millennium.par",
"sage_output_format": "sage_hdf5",
"first_file": O, # File range (or core range for HDF5) to plot.
"last_file": O, # Closed interval, [first_ file, last_file].

NOTE: If the sage_output_format is sage_binary (i.e., SAGE wrote as binary output), then you must also
specify the number of output files, num_output_files.

6 Chapter 2. Maintainers

https://sage-model.readthedocs.io/en/latest/introduction.html
https://github.com/sage-home/sage-model/plotting/galaxy_properties.py

SAGE-analysis Documentation, Release 0.0.1

2.3.3 Setting up the Calculation and Plotting Dictionaries

To ensure that sage-analysis does not perform extraneous computations, the properties for each Model are calculated
depending upon the plot_toggles specified. For example, the black hole mass of each galaxy will only be read if
the black hole-bulge relationship plot toggle is set. We refer to this page <./custom_calculations for a full list of the
default plot toggles.

To achieve this, we search for all functions in a module that are named calc_<plot_toggle>. We build these
functions into a dictionary that are passed into calc_properties_all files().

from sage_analysis.utils import generate_func_dict

Search for functions named "calc <plot_toggle>" in the "example_ calcs"

module.

calculation_functions = generate_func_dict(
plot_toggles,
module_name="sage_analysis.example_calcs",
function_prefix="calc"

)

NOTE: All functions must have the signature calc_<plot_toggle> (model, galaxies, =*xoptional
keyword arguments). We expand on this more in Using Keyword Arguments.

In a similar manner, we search for all the functions in a module that are named plot_<plot_toggle>. From this
dictionary, we can then iterate over and make all the plots!

Search for functions named "plot_<plot_toggles>" in the "example_plots"

module.

plot_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_plots",
function_prefix="plot_ "

)

NOTE: All functions must have the signature calc_<plot_toggle>(list of models,
plot_output_path, *xoptional keyword arguments). We expand on this more in Using Key-
word Arguments.

2.3.4 Initializing a Model

With the calculation functions prepped, we are now poised to perform the actual analysis. The analysis of SAGE
models is done through a specialized Mode 1 class. Importantly, the Model class only handles the calculating prop-
erties. To actually read the SAGE output, each Model requires a data class. These are specific to the SAGE output
format. For example, we include a data class for SageHdf5Data and SageBinaryData. Through this data class,
the package can be easily extended to ingest any arbitrary SAGE output format. We show such an example /ere.

from sage_analysis.model import Model
from sage_analysis.sage_hdf5 import SageHdfbData

model = Model ()
model .plot_output_format = plot_output_format

model.data_class = SageHdf5Data (model, millennium["sage_file"])
The data class has read the SAGE ini file. Update the model with the parameters

read and those specified by the user.
model .update_attributes (model_dict)

2.3. Analysing SAGE Output 7

SAGE-analysis Documentation, Release 0.0.1

2.3.5 Storing Galaxy Properties

When performing calculations, sage-analysis stores all the calculating properties in the properties attribute of the
Model instance. This attribute is a dictionary and can be used to access any of the properties pertaining to the Model;
for example, model.properties ["SMF"] stores the array representing the stellar mass function.

These properties must first be initialized. sage-analysis offers three ways to compute and store galaxy properties.

Binned Properties

These are properties that are binned on some value. For example: the stellar mass function is binned depending upon
the galaxy stellar mass; the fraction of quiescent galaxies is binned upon the galaxy stellar mass; the mass of gas in
each SAGE reservoir (cold gas/hot gas/stars/etc) is binned upon the friends-of-friends halo mass. The bins themselves
are accessed through the bins attribute of the model instance. This attribute is a dictionary and can be used to access
any of the bins for the Model; for example, model.bins["stellar_mass_bins"] would return the stellar
mass bins used for the stellar mass function.

Properties binned on stellar mass.

stellar_properties = ["SMF", "red SMF", "blue_ SME"]

min_mass = 8.0 # logl0O (Msun).

max_mass = 12.0 # loglO(Msun).

bin_width = 0.1 # logl0 (Msun).

bin_name = "stellar_mass_bins"

model.init_binned_properties (min_mass, max_mass, bin_width, bin_name,
stellar_properties)

Properties binned on FoF halo mass.

component_properties = [f"halo_{component}_ fraction_sum" for component in
["baryon", "stars", "cold", "hot", "ejected", "ICS", "bh"]]

min_mass = 10.0 # loglO(Msun)

max_mass = 14.0 # 1logl0O (Msun)

bin_width = 0.1 # logl0 (Msun)

bin_name = "halo_mass_bing"

model.init_binned_properties (min_mass, max_mass, bin_width, bin_name,

component_properties)

Scatter Properties

In many instances, we don’t want to fit an exact line to the properties, but rather just get a sense of the typical data point
values. For these, we want to compute lists of (x, y) coordinates that we will plot later. For example, the black
hole bulge relationship will show a number of black hole masses and the corresponding bulge mass. The (maximum)
number of data points shown on each plot can be set through the sample size attribute.

For each of these, we need a list for both x and y points. E.g., the
black hole bulge needs both "bh_mass" and "bulge _mass".
scatter_properties = ["bh_mass", "bulge_mass", "BTF_mass", "BTF_vel"]
model.init_scatter_properties (scatter_properties)

Single Properties

Finally, often we want to use a single number to summarize a property for all galaxies across a single snapshot. This is
most useful when analyzing galaxy properties over a range of snapshots through the history module. These properties
are initialized with a value of 0. 0.

8 Chapter 2. Maintainers

https://github.com/sage-home/sage-model/plotting/history.py

SAGE-analysis Documentation, Release 0.0.1

single_properties = ["SMFD", "SEFRD"]
model.init_single_properties(single_properties)

2.3.6 Doing the Analysis and Plotting

We have set up the dictionary for the plotting functions in Setting up the Calculation and Plotting Dictionaries. Once
all the properties have been calculated, we can finally do the plotting!

Calculate all the properties.
model.calc_properties_all files(calculations_functions)

Now do the plotting.
for func_name in plot_functions.keys():
func = plot_functions[func_name] [0]
func ([model], plot_output_path, plot_output_format)

NOTE: The plotting scripts accept a list of Model classes as the first argument. For this scenario, we only have one
model and so we cast it to a list first.

The above code snippets produce the glorious stellar mass function!

ISMFI .. ISMFI image:: ../figs/SMF.png

2.3.7 Using Keyword Arguments

generate_func_dict () accepts an optional argument to allow the calculation or plotting functions to handle
keyword arugments. This argument is a dictionary with keys equal to the plot toggles. The value of each entry is
another dictionary containing all of the keyword arguments and their corresponding value.

from sage_analysis.utils import generate_func_dict

By default, the stellar mass function 1is not computed for the red and blue
galaxy populations. Let's turn it on.
keyword_args = {"SME": {"calc_sub_populations": True}}

calculation_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_calcs",
function_prefix="calc",
keyword_args=keyword_args
)

model.calc_properties_all_files(calculations_functions)

Then we can adjust "plot_SMF" to also plot these extra populations.
keyword_args = {"SME": {"plot_sub_populations": True}}

plot_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_plots",
function_prefix="plot_",
keyword_args=keyword_args

)

Now do the plotting with the extra kwargs.
for func_name in plot_functions.keys():

(continues on next page)

2.3. Analysing SAGE Output 9

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

func = plot_functions[func_name] [0]
keyword_args = plot_functions|[func_name] [1]
func (models, plot_output_path, plot_output_format, =*xkeyword_args)

ISMF_popl .. ISMF_popl image:: ../figs/SMF_pop.png

2.4 Analysing Across Multiple Snapshots

We show how to analyse the output of SAGE at a single snapshot ere. On this page, we show how to analyse SAGE
output across multiple snapshots. This is very useful if you wish to analyse the evolution of (e.g.,) the stellar mass
function, the stellar mass density, etc.

This full example is shown in the history module using the default parameter file.

2.4.1 Setting Things Up

In a similar manner to analysing a single snapshot, we first specify which properties we wish to analyse and plot.

Base specifications.

plot_output_format = "png"

plot_output_path = "./plots" # Will be created if path doesn't exist.

plot_toggles = {"SMF_z" : 1, # Stellar mass function across redshift.
"SFRD_z" : 1, # Star formation rate density across redshift.
"SMD_z" : 1} # Stellar mass density across redshift.

Then, we specify the SAGE output we wish to analyse and the redshifts at which we want the properties to be
calculated at.

NOTE: For all the specified redshifts, sage-analysis searches for the snapshot closest to the redshift. Also set the
entry to "A11" to analyse across all snapshots.

millennium = {"SMF_z" : [0.0, 1.0, 2.0, 3.0], # Redshifts you wish to plot the_
—stellar mass function at.

"density_z": "All", # Redshifts to plot the stellar mass/star formation,
—density at.

"IMEF": "Chabrier", # Chabrier or Salpeter.

"label": "Mini-Millennium", # Legend label.

"sage_file": "../input/millennium.par",

"sage_output_format": "sage_hdf5",

"first_file": O, # File range (or core range for HDF5) to plot.

"last_file": O, # Closed interval, [first file, last_file].

NOTE: If the sage_output_format is sage_binary (i.e., SAGE wrote as binary output), then you must also
specify the number of output files, num_output_files.

2.4.2 Initializing the Model

Calculation and Plotting Dictionaries

Again, as outlined previously, we first generate the dictionaries necessary to analyse and plot properties.

10 Chapter 2. Maintainers

https://github.com/sage-home/sage-model/plotting/galaxy_properties.py

SAGE-analysis Documentation, Release 0.0.1

from sage_analysis.utils import generate_func_dict

Search for functions named "calc_<plot_toggle>" in the "example_calcs"

module.

calculation_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_calcs",
function_prefix="calc"

)

Search for functions named "plot_<plot_toggles>" in the "example_plots"

module.

plot_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_plots",
function_prefix="plot_ "

)

Setting up the Class

The analysis of SAGE models is done through a specialized Mode 1 class. Importantly, the Model class only handles
the calculating properties. To actually read the SAGE output, each Model requires a data class. These are specific
to the SAGE output format. For example, we include a data class for SageHdf5Data and SageBinaryData.
Through this data class, the package can be easily extended to ingest any arbitrary SAGE output format. We show
such an example /ere.

from sage_analysis.model import Model
from sage_analysis.sage_hdf5 import SageHdf5Data

model = Model ()
model.plot_output_format = plot_output_format

model.data_class = SageHdfbData (model, millennium["sage_file"])
The data class has read the SAGE ini file. Update the model with the parameters

read and those specified by the user.
model .update_attributes (model_dict)

Specifying the Empty Property Containers

We also initialize the Model properties as outlined previously.

stellar_properties = ["SMEF", "red_ SMF", "blue_ SMF"]
model.init_binned_properties (8.0, 12.0, 0.1, "stellar mass_bins",
stellar_properties)

Properties that are extended as lists.
scatter_properties = []
model.init_scatter_properties(scatter_properties)

Properties that are stored as a single number.
single_properties = ["SMFD", "SERD"]
model.init_single_properties(single_properties)

(continues on next page)

2.4. Analysing Across Multiple Snapshots 11

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

We will store the values of each snapshot in a dictionary.

model .properties["SMF_dict"] = {}
model .properties["SFRD_dict"] = {}
model.properties["SMD_dict"] = {}

2.4.3 Setting Up The Snapshot Loop

The key difference for this example is that we want to analyse properties over a number of redshifts. We hence must
determine which snapshots in the model correspond to the requested redshifts.

We may be plotting the density at all snapshots...
if model_dict["density_z"] == "All":
model.density_redshifts = model.redshifts
else:
model.density_redshifts = model_dict["density_ z"]

Same for SMF
if model_dict["SMF_z"] == "All":
model.SMF_redshifts = model.redshifts
else:
model.SMF_redshifts = model_dict["SMF_z"]

Find the snapshots that most closely match the requested redshifts.
model.SMF_snaps = [(np.abs(model.redshifts - SMF_redshift)).argmin() for
SMF_redshift in model.SMF_redshifts]

model.density_snaps = [(np.abs(model.redshifts - density_redshift)) .argmin() for
density_redshift in model.density_redshifts]

Check which snapshots we uniquely need to loop through.
snaps_to_loop = np.unique (my_model.SMF_snaps + my_model.density_snaps)

2.4.4 lterating Through Snapshots

Finally, we are poised to iterate through the snapshots and calculate all the properties required. Importantly, at the end
of each snapshot, we must place the calculate properties into the appropriate dictionary and reset the property.

for snap in snap_iter:

Each snapshot is unique. So reset the tracking.

model .properties["SME"] = np.zeros (len(model.bins["stellar mass_bins"])-1,
dtype=np.float64)

model .properties["SFRD"] = 0.0

model.properties["SMD"] = 0.0

Update the snapshot we're reading from. Data Class specific.
model .data_class.update_snapshot (model, snap)

Calculate all the properties. Since we're using a HDF5 file, we want to keep
the file open because we read other snapshots from that one file.

model.calc_properties_all files(calculation_functions, close_file=False)

We need to place the SMF inside the dictionary to carry through.

(continues on next page)

12 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

if snap in model.SMF_snaps:
model .properties["SMF_dict"] [snap] = model.properties["SMF"]

Same with the densities.
if snap in model.density_snaps:

model .properties["SFRD_dict"] [snap] = model.properties["SFRD"]
model .properties["SMD_dict"] [snap] = model.properties["SMD"]

Close the HDF5 file cause we're done with it.
model.data_class.close_file (model)

Finally, plot the properties!

Similar to the calculation functions, all of the plotting functions are in the

‘example_plots.py module and are labelled ‘plot_<toggle>".

plot_functions = generate_func_dict (plot_toggles,
module_name="sage_analysis.example_plots",
function_prefix="plot_")

Now do the plotting.

for func_name in plot_functions.keys():
func = plot_functions[func_name] [0]
keyword_args = plot_functions[func_name] [1]

func (models, plot_output_path, plot_output_format, =*+keyword_args)

This produces the stellar mass function, star formation rate density, and stellar mass density over the various redshifts.

user/../figs| M fredShigRASRRY . prvgfigs/SMD . png

2.5 Analysing and Plotting Multiple Models

A key feature of the sage-analysis package is its ability to easily and succinctly analyse and plotting a number of
different SAGE Models. This makes it easy to compare different models very quickly.

We have covered the basics of plotting a single model /sere. In this example, we touch upon those things that must
change to visualize multiple models.

2.5.1 Setting Things Up

Again, specify what you want to plot in an identical manner to previously.

Going to just plot the stellar mass function.
plot_toggles = {"SME": 1}

plot_output_format = "png"
plot_output_path = "./plots"

(continues on next page)

2.5. Analysing and Plotting Multiple Models 13

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

if not os.path.exists (plot_output_path):
os.makedirs (plot_output_path)

2.5.2 Defining the Model Dictionaries

Each Model requires its own dictionary to define its input files and other parameters. For this example, let’s suppose
we wish to compare the results of running SAGE on the default Mini-Millennium simulation and Mini-Millennium
without supernova feedback.

millennium = { "snapshot": 63, # Snapshot we're plotting properties at.
"IMEF": "Chabrier", # Chabrier or Salpeter.
"label": "Mini-Millennium", # Legend label.
"sage_file": "../input/millennium.par",
"sage_output_format": "sage_hdf5",
"first_file": O, # File range (or core range for HDF5) to plot.
"last_file": O, # Closed interval, [first_file, last_file].

millennium_noSN = { "snapshot": 63, # Snapshot we're plotting properties at.
"IMF": "Chabrier", # Chabrier or Salpeter.
"label": "Mini-Millennium-NoSN", # Legend label.
"sage_file": "../input/millennium_noSN.par",
"sage_output_format": "sage_binary",
"first_file": 0, # File range (or core range for HDF5) to plot.
"last_file": O, # Closed interval, [first_file, last_file].
"num_output_files": 1,

sims_to_plot = [millennium, millennium_noSN]
models = []

The important line here is the very last line. We place all the models we wish to analyse into a single list,
sims_to_plot. Then, in the following code block, we will iterate through each of these simulations and place
the Model classes in the model list.

NOTE: For example purposes, we use the binary SAGE output option for the no supernovae simulation. Hence, we
must specify the number of output files that SAGE wrote to, num_output_files.

2.5.3 lterating Through Models

Analysing multiple models is down in an identical manner as shown previously. The only difference is that we wrap
the code in a for loop and iterate through models_to_plot. We defer to the previous page for a full explanation
of the following code block.

Set up the dictionaries for the calculation and plotting functions.
from sage_analysis.utils import generate_func_dict

Search for functions named "calc_<plot_toggle>" in the "example_calcs"
module and "plot_<plot_toggle>" in the "example plots" module.
calculation_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_calcs",

(continues on next page)

14 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

function_prefix="calc"

)

plot_functions = generate_func_dict (
plot_toggles,
module_name="sage_analysis.example_plots",
function_prefix="plot_ "

)

Iterate through the simulations and set up a Model for each.
from sage_analysis.model import Model

from sage_analysis.sage_hdf5 import SageHdfbData

from sage_analysis.sage_binary import SageBinaryData

for model_dict in sims_to_plot:
model = Model ()
model .plot_output_format = plot_output_format

This switch case should be extended if you're defining your own
custom data class.

if model_dict["sage_output_format"] == "sage_hdf5":
model.data_class = SageHdfbData (model, millennium["sage_file"])
elif model_dict["sage_output_format"] == "sage_binary":
model.data_class = SageBinaryData (model, model_dict["num_output_files"],

model_dict(["sage_file"],
model_dict ["snapshot"])
else:
raise ValueError

The data class has read the SAGE ini file. Update the model with the parameters
read and those specified by the user.
model .update_attributes (model_dict)

Initialize the properties for this model. Only plotting the SMF.

stellar_properties = ["SMEF", "red_ SME", "blue_ SMEF"]

min_mass = 8.0 # logl0O (Msun).

max_mass = 12.0 # loglO(Msun).

bin_width = 0.1 # logl0O(Msun).

bin_name = "stellar_mass_bins"

model.init_binned_properties (min_mass, max_mass, bin_width, bin_name,
stellar_properties)

Calculate all the properties.
model.calc_properties_all_files(calculations_functions)

Append this model to the list.
models.append (model)

2.5.4 Plotting Multiple Models

All the hard work has already been done! The plotting functions defined in plot_functions accept a list of models
as their first argument. Hence, lets just pass in models!

for func_name in plot_functions.keys () :
func = plot_functions[func_name] [0]

(continues on next page)

2.5. Analysing and Plotting Multiple Models 15

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

func (models, plot_output_path, plot_output_format)

This produces the stellar mass function for multiple models. From this, we can better understand the role that super-
nova feedback plays in regulating galaxy growth.

user/../figs/SMF_noSN.png

2.5.5 Using Keyword Arguments

Both the calculation and plotting functions support the use of optional keyword arguments. This allows finer control
over plotting (e.g.) galaxy sub-populations. The procedure for using this option for multiple models identical to the
single Model scenario which we show in Using Keyword Arguments.

2.5.6 Analysing Multiple Models Over Redshift

To analyse multiple models over a number of redshifts, one simply needs to wrap the code outlined /ere in the for
model in sim_to_plot loop.

We defer to the history module for a full example of analysing multiple models over redshifts.

user/../figs| 8 /redshiioRASREN SN geydSMD_noSN. png

2.6 Defining Custom Properties

We have previously given examples how to analyse SAGE properties at a single snapshot or over multiple redshifts.
However, it is quite common that you may wish to calculate properties different to those included in the base version
of sage-analysis. For example, you may wish to investigate the time since a last major merger as a function of galaxy
stellar mass.

This page outlines how sage-analysis can be used to calculate any arbirtary properties.

2.6.1 Default Properties

The sage-analysis package includes a number of properties that can be analysed and plotted by default.

16 Chapter 2. Maintainers

https://github.com/sage-home/sage-model/plotting/history.py

SAGE-analysis Documentation, Release 0.0.1

Property Plot Tog- | Description Prop-
gle Name erty
Type

Stellar ~ mass | SMF Number of galaxies with a given stellar mass. Binned.

function

Baryonic mass | BMF Number of galaxies with a given stellar plus cold gas mass. Binned

function

Gas mass func- | GMF Number of galaxies with a given cold gas mass. Binned.

tion

Baryonic Tully- | BTF Maximum velocity of a galaxy as a function of baryonic (stellar plus | Scatter.

Fisher cold gas) mass.

Specific star | sSFR Specific star formation rate as a function of stellar mass. Scatter.

formation rate

Gas fraction gas_frac Fraction of baryons (stellar plus cold gas) in the form of cold gas as a | Scatter.
function of stellar mass.

Mass metallic- | metallicity | Metallicity as a function of stellar mass. Scatter.

ity

Black hole | bh_bulge Mass of galaxy black hole as a function of galaxy bulge mass. Scatter.

bulge

Quiescent quiescent | Fraction of galaxies that are quiescent as a function of stellar mass. Binned.

galaxy popula-

tion

Bulge fraction bulge_fractiprFraction of stellar mass in the form of bulge/disk as a function of stel- | Scatter.
lar mass.

Baryon fraction | baryon_fracti®aryon fraction in each reservoir (cold, hot, stellar, ejected, intraclus- | Binned.
ter, and black hole) as a function of FoF halo virial mass.

Reservoir mass | reservoirs Amount of mass in each reservoir (cold, hot, stellar, ejected, intraclus- | Scatter.
ter, and black hole) as a function of FoF halo virial mass.

Spatial ~ distri- | spatial Spatial distribution of galaxies across the simulation box. Scatter.

bution

There are also a handful of toggles available to analyse properties over a number of redshifts.
Property Plot Toggle | Description Binning
Name Type

Stellar mass func- | SMF_z Number of galaxies with a given stellar mass over multiple | Binned.

tion redshifts for each model.

Star formation rate | SFRD_z Total star formation rate density across entire simulation box | Single.

density as a function of redshift.

Stellar mass den- | SMD_z Total stellar mass density across entire simulation box as a | Single.

sity function of redshift.

2.6.2 Adding Your Own Properties

There are

1. Set up Model.properties[“fff”’] field.

2. Write the function to compute the property.

3. Add the function to the calculations dict.

4. Add the plotting function to the plot dict.

2.6. Defining Custom Properties

17

SAGE-analysis Documentation, Release 0.0.1

SAGE operates by allowing each processor to write to its own file as galaxies are evolved through cosmic time. sage-
analysis processes galaxy properties of each of these files individually. After calculating each property, they are stored
in the properties attribute and carried across files. The pseudo-code looks like this:

for file in num_files:

compute stellar mass function for file
add stellar mass function to Model.properties["SME"] array.

calculate black hole bulge relationship for file
extend the Model.properties["bh mass"] and Model.properties["bulge mass"] lists

...complete for other properties...

To calculate each of these properties, a function named calc_<property_name> is called; for example,
calc_SMF () is called to compute the stellar mass function of each SAGE file.

2.7 Ingesting Custom Data

2.8 sage_analysis.Model

This module contains the Model class. The Model class contains all the data paths, cosmology etc for calculating
galaxy properties.

To read SAGE data, we make wuse of specialized Data Classes (e.g., SageBinaryData
and:py:class:~sage_analysis.sage_hdf5.SageHdf5Data). =~ We refer to ../user/data_class for more information
about adding your own Data Class to ingest data.

To calculate (and plot) extra properties from the SAGE output, we refer to ../user/calc.rst and ../user/plotting.rst.
Author: Jacob Seiler.

class sage_analysis.model.Model (sage_file: str, sage_output_format: Optional[str], label:
Optional[str], first_file_to_analyze: int, last_file_to_analyze:
int, num_sage_output_files: Optional[int], random_seed:
Optional[int], IMF: str, plot_toggles: Dict[str, bool],
plots_that_need_smf: List[str], sample_size: int = 1000, sS-

FRcut: float = -11.0)
Handles all the galaxy data (including calculated properties) for a SAGE model.

The ingestion of data is handled by inidivudal Data Classes (e.g., SageBinaryData and SageHdf5Data).
We refer to ../user/data_class for more information about adding your own Data Class to ingest data.

calc_properties (calculation_functions, gals, snapshot: int)
Calculates galaxy properties for a single file of galaxies.

Parameters

* calculation_functions (dict [string, function]) — Specifies the functions used to calculate
the properties. All functions in this dictionary are called on the galaxies. The function
signature is required to be func (Model, gals)

* gals (exact format given by the Mode 1 Data Class.) — The galaxies for this file.

* snapshot (int) — The snapshot that we’re calculating properties for.

18 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Notes

If sage output_format is sage_binary, gals is a numpy structured array. If
sage_output_format:is sage_hdf5, gals is an open HDF5 group. We refer to ../user/data_class
for more information about adding your own Data Class to ingest data.

calc_properties_all_files (calculation_functions, snapshot: int, close_file: bool = True,

use_pbar: bool = True, debug: bool = False)
Calculates galaxy properties for all files of a single Mode 1.

Parameters

* calculation_functions (dict [string, list(function, dict[string, variable])]) — Specifies the
functions used to calculate the properties of this Mode 1. The key of this dictionary is the
name of the plot toggle. The value is a list with the Oth element being the function and
the 1st element being a dictionary of additional keyword arguments to be passed to the
function. The inner dictionary is keyed by the keyword argument names with the value
specifying the keyword argument value.

All functions in this dictionary for called after the galaxies for each sub-file have been
loaded. The function signature is required to be func (Model, gals, <Extra
Keyword Arguments>).

* snapshot (int) — The snapshot that we’re calculating properties for.

* close_file (boolean, optional) — Some data formats have a single file data is read from
rather than opening and closing the sub-files in read_gals (). Hence once the prop-
erties are calculated, the file must be closed. This variable flags whether the data class
specific close_file () method should be called upon completion of this method.

* use_pbar (Boolean, optional) — If set, uses the t gdm package to create a progress bar.
* debug (Boolean, optional) — If set, prints out extra useful debug information.

init_binned_properties (bin_low: float, bin_high: float, bin_width: float, bin_name: str, prop-
erty_names: List[str], snapshot: int)
Initializes the properties (and respective bins) that will binned on some variable. For example, the

stellar mass function (SMF) will describe the number of galaxies within a stellar mass bin.

bins can be accessed via Model.bins["bin_name"] and are initialized as ndarray.
properties can be accessed via Model.properties["property_name"] and are initialized
using numpy . zeros.

Parameters

¢ bin_low, bin_high, bin_width (floats) — Values that define the minimum, maximum and
width of the bins respectively. This defines the binning axis that the property_names
properties will be binned on.

* bin_name (string) — Name of the binning axis, accessed by Model.
bins["bin_name"].

» property_names (list of strings) — Name of the properties that will be binned
along the defined binning axis. Properties can be accessed using Model.
properties["property_name"]; e.g., Model .properties["SMF"] would
return the stellar mass function that is binned using the bin_name bins.

* snapshot (int) — The snapshot we’re initialising the properties for.

init_scatter_properties (property_names: List[str], snapshot: int)
Initializes the properties that will be extended as ndarray. These are used to plot (e.g.,) a the star
formation rate versus stellar mass for a subset of sample size galaxies. Initializes as empty ndarray.

2.8. sage_analysis.Model 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SAGE-analysis Documentation, Release 0.0.1

Parameters

» property_names (list of strings) — Name of the properties that will be extended as
ndarray.

« snapshot (inf) — The snapshot we’re initialising the properties for.

init_single_properties (property_names: List[str], snapshot: int) — None
Initializes the properties that are described using a single number. This is used to plot (e.g.,) a the
sum of stellar mass across all galaxies. Initializes as 0. 0.

Parameters

* property_names (l/ist of strings) — Name of the properties that will be described using a
single number.

* snapshot (int) — The snapshot we’re initialising the properties for.

IMF
The initial mass function.

Type {"Chabrier", "Salpeter"}

base_sage_data_path
Base path to the output data. This is the path without specifying any extra information about redshift or
the file extension itself.

Type string
bins
The bins wused to bin some properties. Bins are initialized through
init_binned properties(). Key is the name of the bin, (bin_name in

init_binned properties ()).
Type dict [string, ndarray]

box_size
Size of the simulation box. Units are Mpc/h.

Type float

calculation_ functions
A dictionary of functions that are used to compute the properties of galaxies. Here, the string is the name
of the toggle (e.g., "SMF"), the value is a tuple containing the function itself (e.g., calc_SMF ()), and
another dictionary which specifies any optional keyword arguments to that function with keys as the name
of variable (e.g., "calc_sub_populations™") and values as the variable value (e.g., True).

Type dict[str, tuple[func, dict[str, any]]]

first file to_analyze
The first SAGE sub-file to be read. If sage output_format is sage_binary, files read must be
labelled sage data_pathXXX. If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases, XXX represents the num-
bers in the range [first_file to_analyze, last_file to_analyze]inclusive.

Type int

hubble_h
Value of the fractional Hubble parameter. Thatis, H = 100+hubble_h.

Type float

label
Label that will go on axis legends for this Mode .

20 Chapter 2. Maintainers

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

SAGE-analysis Documentation, Release 0.0.1

Type string

last_file_to_analyze
The last SAGE sub-file to be read. If sage_output_format is sage_binary, files read must be
labelled sage data_pathXXX. If sage _output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases, XXX represents the num-
bersintherange [first_file to_analyze, last_file to_analyze]inclusive.

Type int

num _gals_all files
Number of galaxies across all files. For HDF5 data formats, this represents the number of galaxies across
all Core_XXX sub-groups.

Type int

num_sage_output_files
The number of files that SAGE wrote. This will be equal to the number of processors the SAGE ran with.

Notes

If sage_output_format is sage_hd£5, this attribute is not required.
Type int

output_path
Path to where some plots will be saved. Used for plot_spatial_3d().

Type string

parameter_dirpath
The directory path to where the SAGE paramter file is located. This is only the base directory path and
does not include the name of the file itself.

Type str

plot_toggles
Specifies which plots should be created for this model. This will control which properties should be
calculated; e.g., if no stellar mass function is to be plotted, the stellar mass function will not be computed.

Type dict[str, bool]

plots_that need smf
Specifies the plot toggles that require the stellar mass function to be properly computed and analyzed. For
example, plotting the quiescent fraction of galaxies requires knowledge of the total number of galaxies.
The strings here must EXACTLY match the keys in plot_toggles.

Type list of ints

properties
The galaxy properties stored across the input files and snapshots. These properties are updated within the
respective calc_<plot_toggle> functions.

The outside key is "snapshot_XX" where XX is the snapshot number for the property. The inner key is
the name of the proeprty (e.g., "SME").

Type dict [string, dict [string, ndarray]] or dict[string, dict[string, float]

random_seed

Specifies the seed used for the random number generator, used to select galaxies for plotting purposes. If
None, then uses default call to seed ().

Type Optional[int]

2.8. sage_analysis.Model 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

SAGE-analysis Documentation, Release 0.0.1

redshifts
Redshifts for this simulation.

Type ndarray

sSFRcut
The specific star formation rate above which a galaxy is flagged as “star forming”. Units are log10.

Type float

sage_data_path
Path to the output data. If sage output_format is sage_binary, files read must be la-
belled sage _data_pathXXX. If sage output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX at snapshot snapshot. In both cases,
XXX represents the numbers in the range [first_file to_analyze, last_file to_analyze]
inclusive.

Type string

sage_file
The path to where the SAGE . in1i file is located.

Type str

sage_output_format
The output format SAGE wrote in. A specific Data Class (e.g., SageBinaryData and
SageHdf5Data) must be written and used for each sage output_format option. We refer to
../user/data_class for more information about adding your own Data Class to ingest data.

Type {"sage_binary", "sage_binary"}

sample_size
Specifies the length of the properties attributes stored as 1-dimensional ndarray. These
properties are initialized using init_scatter properties().

Type int

snapshot
Specifies the snapshot to be read. If sage_output_format is sage_hdf5, this specifies the HDF5
group to be read. Otherwise, if sage_output_format is sage_binary, this attribute will be used
to index redshifts and generate the suffix for sage_data_path.

Type int

volume
Volume spanned by the trees analyzed by this model. This depends upon the number of files processed,
[:py:attr: ~first_file_to_analyze , :py:attr: ~last_file_to_analyze],
relative to the total number of files the simulation spans over, num_sim_tree_files.

Notes

This is not necessarily box_size cubed. It is possible that this model is only analysing a subset of files
and hence the volume will be less.

Type volume

22 Chapter 2. Maintainers

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SAGE-analysis Documentation, Release 0.0.1

2.9 sage_analysis.sage_hdf5

This module defines the SageHdf5Data class. This class interfaces with the Mode1 class to read in binary data
written by SAGE. The value of sage_output_format is generally sage_hdf5 if it is to be read with this class.

We refer to Ingesting Custom Data for more information about adding your own Data Class to ingest data.
Author: Jacob Seiler.

class sage_analysis.sage_hdf5.SageHdf5Data (model: sage_analysis.model.Model,

sage_file_to_read: str)
Class intended to inteface with the ModeI class to ingest the data written by SAGE. It includes methods for

reading the output galaxies, setting cosmology etc. It is specifically written for when sage_output_format
is sage_hdfb.

_check_model_compatibility (model: sage_analysis.model.Model, sage_dict: Op-

tional[Dict[str, Any]]) — None
Ensures that the attributes in the Mode I instance are compatible with the variables read from the SAGE

parameter file (if read at all).
Parameters
¢ model (Mode I instance) — The model that this data class is associated with.

* sage_dict (optional, dict[str, Any]) — A dictionary containing all of the fields read from
the SAGE parameter file.

Warning:

UserWarning Raised if the user initialized Mode1 with a value of num_sage_output_files
that is different to the value specified in the HDFS5 file.

_read_sage_params (sage_file_path: str) — Dict[str, Any]
Read the SAGE parameter file.

Parameters sage_file_path (string) — Path to the SAGE parameter file.
Returns model_dict — Dictionary containing the parameter names and their values.
Return type dict [str, var]

close_file (model)
Closes the open HDFS file.

determine_num_gals (model: sage_analysis.model.Model, snapshot: int, *args)
Determines the number of galaxies in all cores for this model at the specified snapshot.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.
* snapshot (int) — The snapshot we’re analysing.

* *args (Any) — Extra arguments to allow other data class to pass extra arguments to their
version of determine_num_gals.

determine_volume_analyzed (model: sage_analysis.model. Model) — float
Determines the volume analyzed. This can be smaller than the total simulation box.

Parameters model (Mode 1 instance) — The model that this data class is associated with.

2.9. sage_analysis.sage_hdf5 23

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

Returns volume — The numeric volume being processed during this run of the code in
(Mpc/h)"3.

Return type float

read_gals (model, core_num, pbar=None, plot_galaxies=False, debug="False)
Reads the galaxies of a single core at the specified snapshot.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.
e core_num (Integer) — The core group we’re reading.

* pbar (tgdm class instance, optional) — Bar showing the progress of galaxy reading. If
None, progress bar will not show.

* plot_galaxies (Boolean, optional) — If set, plots and saves the 3D distribution of galaxies
for this file.

* debug (Boolean, optional) — If set, prints out extra useful debug information.
Returns gals — The galaxies for this file.

Return type h5py group

Notes
tgdm does not play nicely with printing to stdout. Hence we disable the tgdm progress bar if
debug=True.

update_snapshot_and_data_path (model: sage_analysis.model. Model, snapshot: int)
Updates the snapshot attribute to snapshot. As the HDFS5 file contains all snapshot information, we
do not need to update the path to the output data. However, ensure that the file itself is still open.

2.10 sage_analysis.sage_binary

This module defines the SageBinaryData class. This class interfaces with the Mode 1 class to read in binary data
written by SAGE. The value of sage_output_format is generally sage_binary if it is to be read with this
class.

We refer to Ingesting Custom Data for more information about adding your own Data Class to ingest data.
Author: Jacob Seiler.

class sage_analysis.sage_binary.SageBinaryData (model: sage_analysis.model.Model,
sage_file_to_read: str)
Class intended to inteface with the Mode1 class to ingest the data written by SAGE. It includes methods for
reading the output galaxies, setting cosmology etc. It is specifically written for when sage output_format
is sage_binary.

_read_sage_params (sage_file_path: str) — Dict[str, Any]
Read the SAGE parameter file.

Parameters sage_file_path (string) — Path to the SAGE parameter file.
Returns model_dict — Dictionary containing the parameter names and their values.

Return type dict [str, var]

24 Chapter 2. Maintainers

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

determine_num_gals (model: sage_analysis.model. Model, *args)
Determines the number of galaxies in all files for this ModeI.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.

* *args (Any) — Extra arguments to allow other data class to pass extra arguments to their
version of determine_num_gals.

determine_volume_analyzed (model: sage_analysis.model. Model) — float
Determines the volume analyzed. This can be smaller than the total simulation box.

Parameters model (Mode 1 instance) — The model that this data class is associated with.

Returns volume — The numeric volume being processed during this run of the code in
(Mpc/h)"3.

Return type float

get_galaxy_struct ()
Sets the numpy structured array for holding the galaxy data.

read_gals (model, file_num, pbar=None, plot_galaxies=False, debug="False)
Reads the galaxies of a model file at snapshot specified by snapshot.

Parameters
* model (Mode1 class) — The Mode 1 we’re reading data for.
« file_num (int) — Suffix number of the file we’re reading.

e pbar (tgdm class instance, optional) — Bar showing the progress of galaxy reading. If
None, progress bar will not show.

* plot_galaxies (bool, optional) — If set, plots and saves the 3D distribution of galaxies for
this file.

* debug (bool, optional) — If set, prints out extra useful debug information.
Returns gals — The galaxies for this file.

Return type numpy structured array with format given by get_galaxy_struct ()

Notes
tgdm does not play nicely with printing to stdout. Hence we disable the tgdm progress bar if
debug=True.

update_snapshot_and_data_path (model: sage_analysis.model. Model, snapshot: int)
Updates the _sage_data_path to point to a new redshift file. Uses the redshift array redshi fts.

Parameters snapshot (inf) — Snapshot we’re updating _sage_data_path to point to.

2.11 sage_analysis.example_calcs

Here we show a myriad of functions that can be used to calculate properties from the SAGE output. By setting the
correct plot toggles and calling generate_func_dict (), adictionary containing these functions can be generated
and passed to calc_properties_all files () to calculate the properties.

The properties are stored (and updated) in the properties attribute.

2.11. sage_analysis.example_calcs 25

https://docs.python.org/3/library/functions.html#float

SAGE-analysis Documentation, Release 0.0.1

We refer to Analysing SAGE Output for more information on how the calculations are handled.
Author: Jacob Seiler

sage_analysis.example_calcs.calc_BMF (model, gals, snapshot: int)
Calculates the baryon mass function of the given galaxies. That is, the number of galaxies at a given baryon
(stellar + cold gas) mass.

The Model .properties["snapshot_<snapshot>"] ["BMF"] array will be updated.

sage_analysis.example_calcs.calc_BTF (model, gals, snapshot: int)
Calculates the baryonic Tully-Fisher relation for spiral galaxies in the given set of galaxies.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["BTF_mass"]
and Model.properties|["snapshot_<snapshot>"] ["BTF_vel"] arrays is given by
sample_size weighted by number_spirals_passed / _num_gals_all_files. If this value is
greater than number_spirals_passed, then all spiral galaxies will be used.

sage_analysis.example_calcs.calec_GMF (model, gals, snapshot: int)
Calculates the gas mass function of the given galaxies. That is, the number of galaxies at a given cold gas mass.

The Model .properties["snapshot_<snapshot>"] ["GMF"] array will be updated.

sage_analysis.example_calcs.calc SFRD_history (model, gals, snapshot: int)
Calculates the sum of the star formation across all galaxies. This will be normalized by the simulation volume
to determine the density. See plot_SFRD () for full implementation.

The Model .properties["snapshot_<snapshot>"] ["SFRD"] value is updated.

sage_analysis.example_calcs.calc_SMD_history (model, gals, snapshot: int)
Calculates the sum of the stellar mass across all galaxies. This will be normalized by the simulation volume to
determine the density. See plot_SMD () for full implementation.

The Model .properties["snapshot_<snapshot>"] ["SMD"] value is updated.
sage_analysis.example_calcs.calc_SMF (model: sage_analysis.model.Model, gals, snap-
shot: int, calc_sub_populations: bool = False,

smf_property_name: str = 'SMF")
Calculates the stellar mass function of the given galaxies. That is, the number of galaxies at a given stellar mass.

The Model.properties["snapshot_<snapshot>"]"SMF"] array will be updated. We
also split the galaxy population into “red” and “blue” based on the value of sSFRcut and up-
date the Model.properties["snapshot_<snapshot>"]["red_SMF"] and Model.
properties["snapshot_<snapshot>"] ["blue_SMF"] arrays.

Parameters

* snapshot (int) — The snapshot the SMF is being calculated at.

* plot_sub_populations (boolean, optional) — If True, calculates the stellar mass function
for red and blue sub-populations.

* smf_property_name (string, optional) — The name of the property used to store the stellar
mass function. Useful if different calculations are computing the stellar mass function but
saving it as a different property.

sage_analysis.example_calcs.calec_SMF_history (model, gals, snapshot: int)
Calculates the stellar mass function of the given galaxies. That is, the number of galaxies at a given stellar mass.

The Model .properties ["SMF"_history] array will be updated.

sage_analysis.example_calcs.calc_baryon_fraction (model, gals, snapshot: int)
Calculates the mass_baryons / halo_virial_mass as a function of halo virial mass for each baryon

26 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

reseroivr (stellar, cold, hot, ejected, intra-cluster stars and black hole). Also calculates the ratio for the total
baryonic mass.

The Model .properties["snapshot_<snapshot>"] ["halo_<reservoir_name>_fraction_sum"]

arrays are updated for each reservoir. In addition, Model .properties["snapshot_<snapshot>"] ["halo_baryon_1
is updated.

Notes

The halo virial mass we use is the background FoF halo, not the immediate host halo of each galaxy.

We only sum the baryon mass in each stellar mass bin. When converting this to the
mass fraction, one must divide by the number of halos in each halo mass bin, Model.
properties["snapshot_<snapshot>"] ["fof_ HMF"]. See plot_baryon_ fraction ()

for full implementation.

If the Model .properties["snapshot_<snapshot>"] ["fof_HMF"] property, with associated bins
Model .bins["halo_mass"bin"] have not been initialized, a ValueError is thrown.

sage_analysis.example_calcs.calc_bh_bulge (model, gals, snapshot: int)
Calculates the black hole mass as a function of bulge mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["BlackHoleMass"]
and Model.propertiesp["snapshot_<snapshot>"]["BulgeMass"] arrays is given by
sample_size weighted by number_galaxies_passed / _num_gals_all_files. If this value is
greater than number_galaxies_passed, then all galaxies will be used.

Notes

We only consider galaxies with bulge mass greater than 10"8 Msun/h and a black hole mass greater than 10"5
Msun/h.

sage_analysis.example_calcs.calc_bulge_fraction (model, gals, snapshot: int)
Calculates the bulge_mass / stellar_mass and disk_mass / stellar_mass ratios as a func-
tion of stellar mass.

The Model .properties|["snapshot_<snapshot>"] ["fraction_bulge_sum"],
Model .properties["snapshot_<snapshot>"] ["fraction_disk_sum"], Model.
properties["snapshot_<snapshot>"] ["fraction_bulge_var"], Model.
properties["snapshot_<snapshot>"] ["fraction_disk_var"] arrays will be updated.
Notes

We only sum the bulge/disk mass in each stellar mass bin. When converting this to the mass fraction,
one must divide by the number of galaxies in each stellar mass bin, the stellar mass function Model.
properties["snapshot_<snapshot>"] ["SMF"]. See plot_bulge fraction () for full im-
plementation.

sage_analysis.example_calcs.calc_gas_£fraction (model, gals, snapshot: int)
Calculates the fraction of baryons that are in the cold gas reservoir as a function of stellar mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["gas_frac_mass"]
and Model.properties["snapshot_<snapshot>"]["gas_frac"] arrays is given by
sample_size weighted by number_spirals_passed / _num_gals_all_files. If this value is
greater than number_spirals_passed, then all spiral galaxies will be used.

2.11. sage_analysis.example_calcs 27

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_calcs.calec_metallicity (model, gals, snapshot: int)
Calculates the metallicity as a function of stellar mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["metallicity_mass"]
and Model .properties["snapshot_<snapshot>"] ["metallicity"] arrays is given by
sample_size weighted by number_centrals_passed / _num_gals_all_files. If this value is

greater than number_centrals_passed, then all central galaxies will be used.

sage_analysis.example_calcs.calc_quiescent (model, gals, snapshot: int)
Calculates the quiescent galaxy fraction as a function of stellar mass. The galaxy population is also split into
central and satellites and the quiescent fraction of these are calculated.

The Model.properties|["snapshot_<snapshot>"] ["centrals_MF"],
Model .properties["snapshot_<snapshot>"] ["satellites_MF"], Model.
properties["snapshot_<snapshot>"] ["quiescent_galaxy_counts"], Model.
properties["snapshot_<snapshot>"] ["quiescent_centrals_counts"], and Model.
properties["snapshot_<snapshot>"] ["quiescent_satellites_counts"] arrays will be
updated.

Notes

We only count the number of quiescent galaxies in each stellar mass bin. When converting this to the qui-
escent fraction, one must divide by the number of galaxies in each stellar mass bin, the stellar mass function
Model .properties["snapshot_<snapshot>"]["SMEF"]. See plot_quiescent () for an ex-
ample implementation.

sage_analysis.example_calcs.calc_reservoirs (model, gals, snapshot: int)
Calculates the mass in each reservoir as a function of halo virial mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["reservoir_mvir"]
and Model .properties["snapshot_<snapshot>"] ["reservoir_<reservoir_name>"] ar-
raysis given by sample_size weighted by number_centrals_passed /_num_gals_all_files.

If this value is greater than number_centrals_passed, then all central galaxies will be used.

sage_analysis.example_calcs.calc_sSFR (model, gals, snapshot: int)
Calculates the specific star formation rate (star formation divided by the stellar mass of the galaxy) as a function
of stellar mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["sSFR_mass"]
and Model.properties["snapshot_<snapshot>"]["sSFR_sSFR"] arrays is given by
sample_size weighted by number_gals_passed / _num_gals_all_files. If this value is
greater than number_gals_passed, then all galaxies with non-zero stellar mass will be used.

sage_analysis.example_calcs.calc_spatial (model, gals, snapshot: int)
Calculates the spatial position of the galaxies.

The number of galaxies added to Model.properties["snapshot_<snapshot>"]["<x/
y/z>_pos"] arrays is given by sample_ size weighted by number_galaxies_passed /
_num_gals_all_files. If this value is greater than number_galaxies_passed, then all galaxies
will be used.

2.12 sage_analysis.example_plots

Here we show a myriad of functions that can be used to plot properties calculated from the SAGE output.

We refer to ../user/plot for more information on how plotting is handled.

28 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Authors: (Jacob Seiler, Manodeep Sinha)

sage_analysis.example_plots.adjust_legend (ax, location="upper right’, scatter_plot=0)
Adjusts the legend of a specified axis.

Parameters
* ax (matplotlib axes object) — The axis whose legend we’re adjusting

* location (String, default “upper right”. See matplot1lib docs for full options) — Location
for the legend to be placed.

* scatter_plot ({0, 1}) — For plots involved scattered-plotted data, we adjust the size and alpha
of the legend points.

Returns
Return type None. The legend is placed directly onto the axis.

sage_analysis.example_plots.plot_BMF (models: List[sage_analysis.model.Model], snapshots:
List[int], plot_output_path: str, plot_output_format: str
= 'png’) — matplotlib.figure.Figure
Plots the baryonic mass function for the specified models. This is the mass function for the stellar mass + cold
gas.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (List of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, optional) — Format the plot will be saved in, includes the full
stop.

* Generates
* The plot will be saved as ‘“<plot_output_path>2.BaryonicMassFunction.<plot_output_format>"

sage_analysis.example_plots.plot_BTF (models: List[sage_analysis.model.Model], snapshots:
List[int], plot_output_path: str, plot_output_format: str
= 'png’) — matplotlib.figure.Figure
Plots the baryonic Tully-Fisher relationship for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

» snapshots (list of ints) — The snapshot to be plotted for each Model in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* Generates

* The plot will be saved as “<plot_output_path>4.BaryonicTullyFisher.<plot_output_format>"

2.12. sage_analysis.example_plots 29

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_plots.plot_GMF (models: List[sage_analysis.model.Model], snapshots:
List[int], plot_output_path: str, plot_output_format: str

= 'png’) — matplotlib.figure.Figure
Plots the gas mass function for the specified models. This is the mass function for the cold gas.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* Generates

* The plot will be saved as ‘“<plot_output_path>3.GasMassFunction.<plot_output_format>"

sage_analysis.example_plots.plot_SFRD_history (models: List[sage_analysis.model. Model],
snapshots: List[int], plot_output_path:
str, plot_output_format: str = 'png’) —
matplotlib.figure.Figure
Plots the evolution of star formation rate density for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (List of ints) — This is a dummy variable that is present to ensure the signature is
identical to the other plot functions.

* plot_output_path (string) — Path to where the plot will be saved.

 snapshot (inf) — This is a dummy variable that is present to ensure the signature is identical
to the other plot functions.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* Generates

* The plot will be saved as ‘‘<plot_output_path>B.SFRDensity.<plot_output_format>"

sage_analysis.example_plots.plot_SMD_history (models: List[sage_analysis.model. Model],
snapshots: List[int], plot_output_path: str,
plot_output_format: str = ’png’) — mat-
plotlib.figure.Figure
Plots the evolution of stellar mass density for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

30 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.

snapshots (List of ints) — This is a dummy variable that is present to ensure the signature is
identical to the other plot functions.

plot_output_path (szring) — Path to where the plot will be saved.

plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

Generates

The plot will be saved as “<plot_output_path>C.StellarMassDensity.<plot_output_format>"

example_plots.plot_SMF (models: List[sage_analysis.model. Model], snapshots:
List[int], plot_output_path: str, plot_output_format: str
= 'png’, plot_sub_populations: bool = False) — mat-
plotlib.figure.Figure

Plots the stellar mass function for the specified models.

Parameters

sage_analysis.

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (list of ints) — The snapshot to be plotted for each Model in models.
plot_output_path (szring) — Path to where the plot will be saved.

plot_output_format (string, default “png’’) — Format the plot will be saved in, includes the
full stop.

plot_sub_populations (Boolean, default False) — If True, plots the stellar mass function
for red and blue sub-populations.

Generates

The plot will be saved as “<plot_output_path>1.StellarMassFunction.<plot_output_format>"

example_plots.plot_SMF_history (models: List[sage_analysis.model.Model],
snapshots: List[int], plot_output_path:
str, plot_output_format="png’) — mat-
plotlib.figure.Figure

Plots the evolution of the stellar mass function for the specified models. This function loops over the value of
model .SMF_snaps and plots and the SMFs at each snapshots.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (list of ints) — This is a dummy variable that is present to ensure the signature is
identical to the other plot functions.

plot_output_path (string) — Path to where the plot will be saved.

plot_output_format (string, default “png’’) — Format the plot will be saved in, includes the
full stop.

Generates

2.12. sage_analy

sis.example_plots 31

SAGE-analysis Documentation, Release 0.0.1

* The plot will be saved as “<plot_output_path>A.StellarMassFunction.<plot_output_format>"

sage_analysis.example_plots.plot_baryon_fraction (models:
List[sage_analysis.model.Model],

snapshots: List[int],
plot_output_path: St
plot_output_format: str = ’png’,

plot_sub_populations: bool = False)

— matplotlib.figure.Figure
Plots the total baryon fraction as afunction of halo mass for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* plot_sub_populations (Boolean, default False) — If True, plots the baryon fraction for
each reservoir. Otherwise, only plots the total baryon fraction.

¢ Generates

* The plot will be saved as “<plot_output_path>11.BaryonFraction.<plot_output_format>"

sage_analysis.example_plots.plot_bh_bulge (models: List[sage_analysis.model.Model],
snapshots: int, plot_output_path: St
plot_output_format: str = ’png’) — mat-
plotlib.figure.Figure
Plots the black-hole bulge relationship for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

¢ Generates

e The plot will be saved as “<plot_output_path>8.BlackHoleBulgeRelationship.<plot_output_format>"

sage_analysis.example_plots.plot_bulge_fraction (models:
List[sage_analysis.model.Model],
snapshots: int, plot_output_path:
str, plot_output_format: str = ’png’,
plot_var: bool = False) — mat-
plotlib.figure.Figure

32 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Plots the fraction of the stellar mass that is located in the bulge/disk as a function of stellar mass for the specified
models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshot (int) — Snapshot we’re plotting at.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* plot_var (Boolean, default False) — If True, plots the variance as shaded regions.

* Generates

* The plot will be saved as “<plot_output_path>10.BulgeMassFraction.<plot_output_format>"

sage_analysis.example_plots.plot_gas_£fraction (models: List[sage_analysis.model Model],
snapshots: List[int], plot_output_path:
str, plot_output_format: str = ’png’) —
matplotlib.figure.Figure
Plots the fraction of baryons that are in the cold gas reservoir as a function of stellar mass for the specified
models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

¢ Generates

* The plot will be saved as “<plot_output_path>6.GasFraction.<plot_output_format>"

sage_analysis.example_plots.plot_metallicity (models: List[sage_analysis.model. Model],
snapshots: List[int], plot_output_path: str,
plot_output_format: str = ’png’) — mat-
plotlib.figure.Figure
Plots the metallicity as a function of stellar mass for the speicifed models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (list of ints) — The snapshot to be plotted for each Model in models.

* plot_output_path (string) — Path to where the plot will be saved.

2.12. sage_analysis.example_plots 33

SAGE-analysis Documentation, Release 0.0.1

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* Generates

* The plot will be saved as ““‘<plot_output_path>7.Metallicity.<plot_output_format>"

sage_analysis.example_plots.plot_quiescent (models: List[sage_analysis.model.Model],
snapshots: List[int], plot_output_path:
str, plot_output_format: str = ’png’,

plot_sub_populations: bool = False) —

matplotlib.figure.Figure
Plots the fraction of galaxies that are quiescent as a function of stellar mass for the specified models. The

quiescent cut is defined by sSFRcut.
Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

 snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* plot_sub_populations (Boolean, default False) — If True, plots the centrals and satellite
sub-populations.

* Generates

* The plot will be saved as “<plot_output_path>9.QuiescentFraction.<plot_output_format>"

sage_analysis.example_plots.plot_reservoirs (models: List[sage_analysis.model. Model],
snapshots: List[int], plot_output_path:
str, plot_output_format: str = ’‘png’) —

List[matplotlib.figure.Figure]
Plots the mass in each reservoir as a function of halo mass for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (list of ints) — The snapshot to be plotted for each Model in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”’) — Format the plot will be saved in, includes the
full stop.

¢ Generates

A plot will be saved as ‘“”’<plot_output_path>12.MassReservoirs<model.label>.<plot_output_format>""¢¢
for each mode.

34 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_plots.plot_sSFR (models: List[sage_analysis.model. Model], snapshots:
List[int], plot_output_path: str, plot_output_format:
str = ’png’) — matplotlib.figure.Figure
Plots the specific star formation rate as a function of stellar mass for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (/ist of ints) — The snapshot to be plotted for each Mode I in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png”) — Format the plot will be saved in, includes the
full stop.

* Generates
¢ The plot will be saved as ““<plot_output_path>5.SpecificStarFormationRate.<plot_output_format>"

sage_analysis.example_plots.plot_spatial (models: List[sage_analysis.model.Model],
snapshots: List[int], plot_output_path: str,
plot_output_format: str = ’png’) — mat-

plotlib.figure.Figure
Plots the spatial distribution of the galaxies for specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (list of ints) — The snapshot to be plotted for each Model in models.
* plot_output_path (string) — Path to where the plot will be saved.

* plot_output_format (string, default “png’’) — Format the plot will be saved in, includes the
full stop.

* Generates

* A plot will be saved as ‘“’<plot_output_path>13.SpatialDistribution<model.label>.<plot_output_format>"*¢
for each

e model.

sage_analysis.example_plots.plot_spatial_3d(pos, output_file, box_size) — mat-
plotlib.figure.Figure
Plots the 3D spatial distribution of galaxies.

Parameters

* pos (numpy 3D array with length equal to the number of galaxies) — The position (in Mpc/h)
of the galaxies.

* output_file (String) — Name of the file the plot will be saved as.
Returns

Return type None. A plot will be saved as output_file.

2.12. sage_analysis.example_plots 35

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_plots.setup_matplotlib_options ()

Set the default plotting parameters.

2.13 sage_analysis.utils

sage_analysis.utils.generate_func_dict (plot_toggles, module_name, function_prefix, key-
word_args={}) — Dict[str, Tuple[Callable, Dict[str,

Any]]]

Generates a dictionary where the keys are the function name and the value is a list containing the function itself
(Oth element) and keyword arguments as a dictionary (Ist element). All functions in the returned dictionary
are expected to have the same call signature for non-keyword arguments. Functions are only added when the

plot_toggles value is non-zero.

Functions are required to be named <module_name><function_prefix><plot_toggle_key>
For example, the default calculation function are kept in the model.py module and are named
calc_<toggle>. E.g., sage_analysis.model.calc_SMF (), sage_analysis.model.

calc_BTF (), sage_analysis.model.calc_sSFR() etc.

Parameters

* plot_toggles (dict, [string, int]) — Dictionary specifying the name of each property/plot and
whether the values will be generated + plotted. A value of 1 denotes plotting, whilst a value
of 0 denotes not plotting. Entries with a value of 1 will be added to the function dictionary.

* module_name (string) — Name of the module where the functions are located. If the func-

tions are located in this module, pass an empty string

3

* function_prefix (string) — Prefix that is added to the start of each function.

» keyword_args (dict [string, dict[string, variable]], optional) — Allows the adding of key-
word aguments to the functions associated with the specified plot toggle. The name of each
keyword argument and associated value is specified in the inner dictionary.

Returns func_dict — The key of this dictionary is the name of the function. The value is a list with
the Oth element being the function and the 1st element being a dictionary of additional keyword
arguments to be passed to the function. The inner dictionary is keyed by the keyword argument
names with the value specifying the keyword argument value.

Return type dict [string, tuple(function, dict[string, variable])]

Examples

>>> import sage_analysis.example_calcs
>>> import sage_analysis.example_plots
>>> plot_toggles = {"SMF": 1}

>>> module_name = "sage_analysis.example_calcs"
>>> function_prefix = "calc_ "

>>> generate_func_dict (plot_toggles, module_name,
—+ELLIPSIS

{'"calc_SMF': (<function calc_SMF at 0x...>,

>>> module_name = "sage_analysis.example_plots"
>>> function_prefix = "plot_ "

>>> generate_func_dict (plot_toggles, module_name,
—+ELLIPSIS

{'"plot_SMF': (<function plot_SMF at Ox...>,

function_prefix) #doctest:

function_prefix) #doctest:

36

Chapter 2. Maintainers

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

SAGE-analysis Documentation, Release 0.0.1

>>> import sage_analysis.example_plots

>>> plot_toggles = {"SMF": 1}

>>> module_name = "sage_analysis.example_plots"

>>> function_prefix = "plot_ "

>>> keyword_args = {"SMF": {"plot_sub_populations": True}}

>>> generate_func_dict (plot_toggles, module_name, function_prefix, keyword_args)
—#doctest: +ELLIPSIS

{'"plot_SMF': (<function plot_SMF at O0x...>, {'plot_sub_populations': True})}

>>> import sage_analysis.example_plots
>>> plot_toggles = {"SMF": 1, "quiescent": 1}

>>> module_name = "sage_analysis.example_plots"

>>> function_prefix = "plot_ "

>>> keyword_args = {"SMF": {"plot_sub_populations": True},

ce "quiescent": {"plot_output_format": "pdf", "plot_sub_
—populations": True}}

>>> generate_func_dict (plot_toggles, module_name, function_prefix, keyword_args)
—#doctest: +ELLIPSIS

{'"plot_SMF': (<function plot_SMF at Ox...>, {'plot_sub_populations': True}),
—'plot_quiescent': (<function plot_qguiescent at 0x...>, {'plot_output_format':
—'pdf', 'plot_sub_populations': True}) }

sage_analysis.utils.read_generic_sage_params (sage_file_path: str) — Dict[str, Any]

Reads the SAGE parameter file values. This function is used for the default sage_binary and sage_hdf5
formats. If you have a custom format, you will need to write a read_sage_params function in your own
data class.

Parameters sage_file_path (string) — Path to the SAGE parameter file.
Returns
» model_dict (dict [str, var]) — Dictionary containing the parameter names and their values.

e Errors

* FileNotFoundError — Raised if the specified SAGE parameter file is not found.

sage_analysis.utils.select_random_indices (inds: numpy.ndarray,

global_num_inds_available: int,
global_num_inds_requested: int, seed: Op-
tionalfint] = None) — numpy.ndarray

Flag this with Manodeep to exactly use a descriptive docstring.

Parameters
e vals (ndarray of values) — Values that the random subset is selected from.
 global_num_inds_available (inf) — The total number of indices available across all files.
* global_num_inds_requested (inf) — The total number of indices requested across all files.

* seed (int, optional) — If specified, seeds the random number generator with the specified
seed.

Returns random_vals — Values chosen.

Return type ndarray of values

2.13. sage_analysis.utils 37

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SAGE-analysis Documentation, Release 0.0.1

Examples

>>> import numpy as np

>>> seed = 666

>>> inds = np.arange(10)

>>> global_ num_inds_available 100

>>> global_num_inds_requested = 50 # Request less than the number of inds,,
—available

R # across all files, but more than is in this_
—~file.
>>> select_random_indices (inds, global_num_inds_available, global_ num_inds_
—requested, seed) # Returns a random subset.

array ([2, 6, 9, 4, 31])

>>> import numpy as np
>>> seed = 666
>>> inds = np.arange (30)
>>> global_num_inds_available = 100
>>> global_num_inds_requested = 10 # Request less than the number of inds,,
—available
across all files, and also less than what is
. # available in this file.
>>> select_random_indices (inds, global num_inds_available, global_num_inds_
—requested, seed) # Returns a random subset.
array ([12, 2, 13])

>>> import numpy as np

>>> inds = np.arange(10)

>>> global_ num_inds_available 100

>>> global_num_inds_requested = 500 # Request more than the number of inds,
—available

S # across all file.

>>> select_random_indices (inds, global num_inds_available, global_num_inds_
—requested) # All input indices are returned.

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

38

Chapter 2. Maintainers

Python Module Index

S

sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.

example_calcs, 25
example_plots, 28
model, 18
sage_binary, 24
sage_hdf5, 23
utils, 36

39

SAGE-analysis Documentation, Release 0.0.1

40 Python Module Index

Index

Symbols

_check_model_compatibility ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 23

_read_sage_params ()
(sage_analysis.sage_binary.SageBinaryData
method), 24

_read_sage_params ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 23

A

adjust_legend() (in
sage_analysis.example_plots), 29

module

B

base_sage_data_path
(sage_analysis.model.Model attribute), 20

bins (sage_analysis.model.Model attribute), 20

box_size (sage_analysis.model.Model attribute), 20

C

calc_baryon_fraction () (in module
sage_analysis.example_calcs), 26
calc_bh_bulge () (in module

sage_analysis.example_calcs), 27
calc_BMF () (in module sage_analysis.example_calcs),

26

calc_BTF () (in module sage_analysis.example_calcs),
26

calc_bulge_fraction() (in module
sage_analysis.example_calcs), 27

calc_gas_fraction() (in module

sage_analysis.example_calcs), 27

calc_GMF () (in module sage_analysis.example_calcs),
26

calc_metallicity() (in module
sage_analysis.example_calcs), 27

calc_properties()
method), 18

calc_properties_all_files()
(sage_analysis.model. Model method), 19

(sage_analysis.model. Model

calc_quiescent () (in module
sage_analysis.example_calcs), 28
calc_reservoirs () (in module
sage_analysis.example_calcs), 28
calc_SFRD_history () (in module
sage_analysis.example_calcs), 26
calc_SMD_history () (in module

sage_analysis.example_calcs), 26
calc_SMF () (in module sage_analysis.example_calcs),

26
calc_SMF_history () (in module
sage_analysis.example_calcs), 26
calc_spatial () (in module
sage_analysis.example_calcs), 28
calc_sSFR() (in module

sage_analysis.example_calcs), 28
calculation_functions

(sage_analysis.model. Model attribute), 20
close_file () (sage_analysis.sage_hdf5.SageHdf5Data

method), 23

D

determine_num_gals ()
(sage_analysis.sage_binary.SageBinaryData
method), 24

determine_num_gals ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 23

determine_volume_analyzed()
(sage_analysis.sage_binary.SageBinaryData
method), 25

determine_volume_analyzed()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 23

41

SAGE-analysis Documentation, Release 0.0.1

F

first_file_to_analyze
(sage_analysis.model.Model attribute), 20

G

generate_func_dict ()
sage_analysis.utils), 36

get_galaxy_struct ()
(sage_analysis.sage_binary.SageBinaryData
method), 25

(in module

Fi

hubble_h (sage_analysis.model. Model attribute), 20

IMF (sage_analysis.model.Model attribute), 20
init_binned_properties|()
(sage_analysis.model. Model method), 19
init_scatter_properties|()
(sage_analysis.model.Model method), 19
init_single_properties|()
(sage_analysis.model. Model method), 20

L

label (sage_analysis.model.Model attribute), 20
last_file_to_analyze
(sage_analysis.model. Model attribute), 21

M

Model (class in sage_analysis.model), 18

N

num_gals_all_files (sage_analysis.model. Model
attribute), 21

num_sage_output_files
(sage_analysis.model. Model attribute), 21

O

output_path (sage_analysis.model. Model attribute),
21

P

parameter_dirpath
attribute), 21

(sage_analysis.model. Model

plot_baryon_fraction () (in module
sage_analysis.example_plots), 32
plot_bh_bulge () (in module

sage_analysis.example_plots), 32

plot_BMF () (in module sage_analysis.example_plots),
29

plot_BTF () (in module sage_analysis.example_plots),
29

plot_bulge_fraction () (in module
sage_analysis.example_plots), 32
plot_gas_fraction() (in module

sage_analysis.example_plots), 33
plot_GMF () (in module sage_analysis.example_plots),
29

plot_metallicity () (in module
sage_analysis.example_plots), 33
plot_quiescent () (in module
sage_analysis.example_plots), 34
plot_reservoirs () (in module
sage_analysis.example_plots), 34
plot_SFRD_history () (in module
sage_analysis.example_plots), 30
plot_SMD_history () (in module

sage_analysis.example_plots), 30
plot_SMF () (in module sage_analysis.example_plots),

31
plot_SMF_history () (in module
sage_analysis.example_plots), 31
plot_spatial () (in module
sage_analysis.example_plots), 35
plot_spatial_3d() (in module
sage_analysis.example_plots), 35
plot_sSFR() (in module

sage_analysis.example_plots), 34
plot_toggles (sage_analysis.model. Model
tribute), 21
plots_that_need_smf
(sage_analysis.model.Model attribute), 21
properties (sage_analysis.model. Model attribute),
21

at-

R

random_seed (sage_analysis.model. Model attribute),
21

read_gals () (sage_analysis.sage_binary.SageBinaryData

method), 25
read_gals () (sage_analysis.sage_hdf5.SageHdf5Data
method), 24
read_generic_sage_params ()
sage_analysis.utils), 37
redshifts (sage_analysis.model. Model attribute), 22

S

sage_analysis.example_calcs (module), 25
sage_analysis.example_plots (module), 28
sage_analysis.model (module), 18
sage_analysis.sage_binary (module), 24
sage_analysis.sage_hdf5 (module), 23
sage_analysis.utils (module), 36
sage_data_path (sage_analysis.model. Model
attribute), 22
sage_file (sage_analysis.model. Model attribute), 22

(in module

42

Index

SAGE-analysis Documentation, Release 0.0.1

sage_output_format (sage_analysis.model.Model
attribute), 22

SageBinaryData (class in
sage_analysis.sage_binary), 24

SageHdf5Data (class in sage_analysis.sage_hdf5), 23

sample_size (sage_analysis.model. Model attribute),

22
select_random_indices () (in module
sage_analysis.utils), 37
setup_matplotlib_options () (in module

sage_analysis.example_plots), 35
snapshot (sage_analysis.model.Model attribute), 22
sSFRcut (sage_analysis.model.Model attribute), 22

U

update_snapshot_and_data_path ()
(sage_analysis.sage_binary.SageBinaryData
method), 25

update_snapshot_and_data_path ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 24

Vv

volume (sage_analysis.model.Model attribute), 22

Index

43

	Installation
	Maintainers
	Introduction
	Setting up SAGE
	Analysing SAGE Output
	Analysing Across Multiple Snapshots
	Analysing and Plotting Multiple Models
	Defining Custom Properties
	Ingesting Custom Data
	sage_analysis.Model
	sage_analysis.sage_hdf5
	sage_analysis.sage_binary
	sage_analysis.example_calcs
	sage_analysis.example_plots
	sage_analysis.utils

	Python Module Index
	Index

